redbrain.shop
Learning from Imbalanced Data Sets
Learning from Imbalanced Data Sets
Learning from Imbalanced Data Sets
Learning from Imbalanced Data Sets
1 of 2

Learning from Imbalanced Data Sets

This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way. This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches. Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided. This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering. It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions.

Price now:

From

160,49 €

to

169,99 €
Günstigstes Angebot anzeigen 160,49 €

Preisentwicklung:

Details:

Learning from Imbalanced Data Sets

This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way. This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches. Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided. This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering. It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions.

Price now:

From

160,49 €

to

169,99 €
Beste Auswahl

Springer Verlag GmbH

Neu

160,49 €

Gratisversand

Hugendubel

160,49 €

Gratisversand

Learning from Imbalanced Data Sets

Springer Verlag GmbH

0.00% (~ 0,00 €)

Neu

160,49 €

Zum Shop gehen
Learning from Imbalanced Data Sets

Hugendubel

0.00% (~ 0,00 €)

160,49 €

Springer Nature Learning From Imbalanced Data Sets

Springer Shop INT

0.00% (~ $$v)

Neu

$169.99

160,49 €

Gratisversand

Geschäft
160,49 €

Gratisversand

Geschäft
$169.99

Gratisversand

Geschäft

Produktbeschreibung

This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way. This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches. Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided. This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering. It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions.

Produktspezifikationen

General

Material

Hard cover

Brand

Springer Nature

Size

1st

Günstigstes Angebot anzeigen 160,49 €

Teilen:

Lieferung, Rückgabe & Rückerstattung
Lieferung

Verkäufer bieten eine Reihe von Lieferoptionen an, sodass Sie die für Sie am besten geeignete auswählen können. Viele Verkäufer bieten kostenlose Lieferung an. Die Versandkosten und den voraussichtlichen Liefertermin finden Sie immer in einer Auflistung des Verkäufers. Während der Kaufabwicklung wird eine vollständige Liste der Lieferoptionen angezeigt. Dies können sein: Expressversand, Standardversand, Economy-Versand, Click & Collect, kostenlose lokale Abholung vom Verkäufer.

Kehrt zurück

Ihre Optionen für die Rücksendung eines Artikels hängen davon ab, was Sie zurückgeben möchten, warum Sie ihn zurückgeben möchten und welche Rückgabebedingungen der Verkäufer hat. Wenn der Artikel beschädigt ist oder nicht mit der Auflistungsbeschreibung übereinstimmt, können Sie ihn zurückgeben, auch wenn die Rückgaberichtlinie des Verkäufers besagt, dass er keine Rücksendungen akzeptiert. Wenn Sie Ihre Meinung geändert haben und keinen Artikel mehr möchten, können Sie dennoch eine Rücksendung anfordern, der Verkäufer muss diese jedoch nicht akzeptieren. Wenn der Käufer seine Meinung zu einem Kauf ändert und einen Artikel zurückgeben möchte, muss er möglicherweise die Rücksendekosten bezahlen, abhängig von den Rückgabebedingungen des Verkäufers. Verkäufer können dem Käufer eine Rücksendeadresse und zusätzliche Rücksendeportoinformationen zur Verfügung stellen. Verkäufer zahlen für das Rückporto, wenn es ein Problem mit dem Artikel gibt. Wenn der Artikel beispielsweise nicht mit der Auflistungsbeschreibung übereinstimmt, beschädigt oder defekt ist oder gefälscht ist. Laut Gesetz haben Kunden in der Europäischen Union auch das Recht, den Kauf eines Artikels innerhalb von 14 Tagen ab dem Tag zu stornieren, an dem Sie die letzte von Ihnen bestellte Ware erhalten, oder ein von Ihnen angegebener Dritter (außer dem Spediteur) (falls separat geliefert). Dies gilt für alle Produkte mit Ausnahme von digitalen Artikeln (z. B. digitaler Musik), die Ihnen sofort mit Ihrer Bestätigung zur Verfügung gestellt werden, sowie für andere Artikel wie Video, DVD, Audio, Videospiele, Sex- und Sinnlichkeitsprodukte und Softwareprodukte, bei denen der Artikel verwendet wurde nicht versiegelt.

Rückerstattungen

Verkäufer müssen nur dann eine Rückerstattung für bestimmte Artikel anbieten, wenn diese fehlerhaft sind, z. B.: Personalisierte Artikel und Sonderanfertigungen, verderbliche Artikel, Zeitungen und Zeitschriften, unverpackte CDs, DVDs und Computersoftware. Wenn Sie Ihr PayPal-Guthaben oder Bankkonto zur Einzahlung der ursprünglichen Zahlung verwendet haben, wird das zurückerstattete Geld auf Ihr PayPal-Guthaben zurückgeführt. Wenn Sie eine Kredit- oder Debitkarte verwendet haben, um die ursprüngliche Zahlung zu finanzieren, wird das zurückerstattete Geld auf Ihre Karte zurückgeführt. Der Verkäufer wird die Rückerstattung innerhalb von drei Arbeitstagen vornehmen, es kann jedoch bis zu 30 Tage dauern, bis Paypal die Überweisung verarbeitet. Bei Zahlungen, die teilweise von einer Karte und teilweise von Ihrem Guthaben / Ihrer Bank finanziert werden, wird das von Ihrer Karte abgezogene Geld auf Ihre Karte zurückgeführt und der Restbetrag wird auf Ihr PayPal-Guthaben zurückgeführt.